A numerical Haar wavelet-finite difference hybrid method and its convergence for nonlinear hyperbolic partial differential equation
نویسندگان
چکیده
Abstract In this research work, we proposed a Haar wavelet collocation method (HWCM) for the numerical solution of first- and second-order nonlinear hyperbolic equations. The time derivative in governing equations is approximated by finite difference. equation converted into its full algebraic form once space derivatives are replaced series. Convergence analysis performed both time, where computational results follow theoretical statements convergence. Many test problems with different terms presented to verify accuracy, capability, convergence
منابع مشابه
Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملHybrid differential transform-finite difference solution of 2D transient nonlinear annular fin equation
In the present paper, hybrid differential transform and finite difference method (HDTFD) is applied to solve 2D transient nonlinear straight annular fin equation. For the case of linear heat transfer the results are verified with analytical solution. The effect of different parameters on fin temperature distribution is investigated. Effect of time interval of differential transform on the stabi...
متن کاملA New Wavelet Operational Method Using Block Pulse and Haar Functions for Numerical Solution of a Fractional Partial Differential Equation
The fractional calculus has many applications in applied science and engineering. The solution of the differential equation containing fractional derivative is much involved. An effective and easy-to-use method for solving such equations is needed. However not only the analytical solutions exist for a limited number of cases, but also the numerical methods are very complicated and difficult. In...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملHAAR WAVELET AND ADOMAIN DECOMPOSITION METHOD FOR THIRD ORDER PARTIAL DIFFERENTIAL EQUATIONS ARISING IN IMPULSIVE MOTION OF A AT PLATE
We present here, a Haar wavelet method for a class of third order partial dierentialequations (PDEs) arising in impulsive motion of a flat plate. We also, present Adomaindecomposition method to find the analytic solution of such equations. Efficiency andaccuracy have been illustrated by solving numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2023
ISSN: ['0420-1213', '2391-4661']
DOI: https://doi.org/10.1515/dema-2022-0203